**The Ruler Postulate guarantees that you can measure any segment.
**The Protractor Postulate guarantees that you can measure any angle.

Protractor Postulate: For every angle A there corresponds a positive real number less than or equal to 180 .

$$
0<m \angle A \leq 180^{\circ}
$$

Note: $\mathrm{m} \angle \mathrm{A}$ stands for the measure of $\angle \mathrm{A}$

Measuring angles with Protractors:

protractor - instrument for measuring angles
degree measure - real number that represents the measure of an angle

degree - unit of measure (equals $1 / 180$ of a semicircle)

**The Completeness Postulate guarantees that a segment exists for every measure
** The Continuity Postulate guarantees that an angle exists for any measure.

Continuity Postulate: If k is a half-plane determined by $\dot{A C}$, then for every real number, $0<x \leq 180$, there is exactly one ray, $\overrightarrow{A B}$, that lies in k such that $\mathrm{m} \angle \mathrm{BAC}=x$

The Protractor Postulate and Continuity Postulate say the same thing but in reverse order. We call these statements converses.

Classifying Angles According to their Measure:

Angle name	Angle measure
acute angle	$0<x<90^{\circ}$
right angle	$x=90^{\circ}$
obtuse angle	$90^{\circ}<x<180^{\circ}$
straight angle	$x=180^{\circ}$

Definition:

congruent angles - angles that have the same measure. (symbol: \cong)

$$
\begin{gathered}
\text { We use = } \\
\text { because we } \\
\text { are comparing } \\
\text { numbers. }
\end{gathered}
$$

 $m \angle A=m \angle B$ so we say $\angle A \cong \angle B$

section 4.3

Definition:

adjacent angles - two coplanar angles that have a common side and a common vertex but no common interior points.

$\angle \mathrm{BAD}$ and $\angle \mathrm{DAC}$ are adjacent

$\angle \mathrm{EFG}$ and $\angle \mathrm{GHJ}$ are not adjacent

Angle Addition Postulate: If k lies in the interior of $\angle \mathrm{MNP}$, then $\mathrm{m} \angle \mathrm{MNP}=\mathrm{m} \angle \mathrm{MNK}+\mathrm{m} \angle \mathrm{KNP}$.

Example: Find $\mathrm{m} \angle \mathrm{YWZ}$.

Solution: $\mathrm{m} \angle \mathrm{YWZ}=60^{\circ}-25^{\circ}=35^{\circ}$

With segments we have midpoints. With angles we have bisectors.

Definition:

An angle bisector is a ray that (except for its origin) is in the interior of an angle and forms congruent adjacent angles.

$\overrightarrow{\mathrm{DB}}$ bisects $\angle \mathrm{ADC}$ so we have $\angle \mathrm{ADB} \cong \angle \mathrm{BDC}$

$$
\text { (i.e. } \mathrm{m} \angle \mathrm{ADB}=\mathrm{m} \angle \mathrm{BDC} \text {) }
$$

We can also say that: $\quad \mathrm{m} \angle \mathrm{ADB}=1 / 2 \mathrm{~m} \angle \mathrm{ADC}$ $\mathrm{m} \angle \mathrm{BDC}=1 / 2 \mathrm{~m} \angle \mathrm{ADC}$

Question: What happens if we bisect a straight angle?
We get 2 right angles
Definition:
perpendicular lines - lines that intersect to form right angles (symbol: \perp)

$\mathrm{m} \perp \mathrm{n}$

Definition:

A linear pair is a pair of adjacent angles whose noncommon sides form a straight angle (are opposite rays)

$\angle A B C$ and $\angle C B D$ are a linear pair

Definition:

Vertical angles - angles adjacent to the same angle and forming linear pairs with it

$\angle 1$ and $\angle 3$ are vertical angles
$\angle 2$ and $\angle 4$ are vertical angles

Definitions:

Two angles are complementary if the sum of their angle measures is 90°.

Two angles are supplementary if the sum of their angle measures is 180°.

Sample Problems: Let $\mathrm{m} \angle \mathrm{A}=58^{\circ}$. Find the following measures:

1. The supplement of $\angle A$.
answer: 122°
2. The complement of $\angle A$.
answer: 32°
3. The angle that makes a vertical angle with $\angle \mathrm{A}$. answer: 58°
4. The angle that makes a linear pair with $\angle \mathrm{A}$. answer: 122°
5. The angles formed when $\angle \mathrm{A}$ is bisected.
answer: 29°

Theorems:

Theorem 4.1: All right angles are congruent.
Theorem 4.2: If two angles are adjacent and supplementary, then they form a linear pair.

Theorem 4.3: Angles that form a linear pair are supplementary.

Theorem 4.4: If one angle if a linear pair is a right angle, then the other angle is also a right angle.

Theorem 4.5: Vertical Angle Theorem. Vertical angles are congruent.

Theorem 4.6: Congruent supplementary angles are right angles.

Theorem 4.7: Angle Bisector Theorem. If $\overrightarrow{A B}$ bisects $\angle C A D$, then $\mathrm{m} \angle \mathrm{CAB}=1 / 2 \mathrm{~m} \angle \mathrm{CAD}$

Note: Many diagrams are not intended to be accurate, so be careful!!! For example, just because two lines "look" parallel, don't assume they are.

Proof of Theorem 4.1: All right angles are congruent.
Given: $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are right angles Prove: $\angle \mathrm{A} \cong \angle \mathrm{B}$

Statements

Reasons

1. $\angle \mathrm{A} \& \angle \mathrm{~B}$ are right angles	1. Given
2. $\mathrm{m} \angle \mathrm{A}=90^{\circ}, \mathrm{m} \angle \mathrm{B}=90^{\circ}$	2. defn. of right angle
3. $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}$	3. substitution
4. $\angle \mathrm{A} \cong \angle \mathrm{B}$	4. defn. of congruent $\angle \mathrm{s}$

Proof of Theorem 4.3: Angles that form a linear pair are supplementary.

Given: $\angle \mathrm{PAB}$ and $\angle \mathrm{BAQ}$ form a linear pair Prove: $\angle \mathrm{PAB}$ and $\angle \mathrm{BAQ}$ are supplementary

Statements

Reasons

1. $\angle \mathrm{PAB}$ and $\angle \mathrm{BAQ}$ form a linear pair
2. $\angle \mathrm{PAB}$ and $\angle \mathrm{BAQ}$ are adjacent and $\angle \mathrm{PAQ}$ is straight
3. $\mathrm{m} \angle \mathrm{PAB}+\mathrm{m} \angle \mathrm{BAQ}=\mathrm{m} \angle \mathrm{PAQ}$
4. $\mathrm{m} \angle \mathrm{PAQ}=180^{\circ} \quad$ 4. defn. of straight angle

5. $\mathrm{m} \angle \mathrm{PAB}+\mathrm{m} \angle \mathrm{BAQ}=180^{\circ}$	5. substitution
6. $\angle \mathrm{PAB}$ and $\angle \mathrm{BAQ}$ are	6. defn. of supp. angles

Proof of Theorem 4.1: All right angles are congruent.
Given: $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are right angles Prove: $\angle \mathrm{A} \cong \angle \mathrm{B}$

Statements
Reasons

1. $\angle \mathrm{A} \& \angle \mathrm{~B}$ are right angles	1.
2. $\mathrm{m} \angle \mathrm{A}=90^{\circ}, \mathrm{m} \angle \mathrm{B}=90^{\circ}$	2.
3. $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}$	3.
4. $\angle \mathrm{A} \cong \angle \mathrm{B}$	4.

Proof of Theorem 4.3: Angles that form a linear pair are supplementary.

Given: $\angle \mathrm{PAB}$ and $\angle \mathrm{BAQ}$ form a linear pair Prove: $\angle \mathrm{PAB}$ and $\angle \mathrm{BAQ}$ are supplementary

Statements

Reasons

1. $\angle \mathrm{PAB}$ and $\angle \mathrm{BAQ}$ form a linear pair	1.
2. $\angle \mathrm{PAB}$ and $\angle \mathrm{BAQ}$ are adjacent and $\angle \mathrm{PAQ}$ is straight	2.
3. $\mathrm{m} \angle \mathrm{PAB}+\mathrm{m} \angle \mathrm{BAQ}=\mathrm{m} \angle \mathrm{PAQ}$	3.
4. $\mathrm{m} \angle \mathrm{PAQ}=180^{\circ}$	

Triangles

Classifying triangles by their angles:
An acute triangle has 3 acute angles.
A right triangle has a right angle.
An obtuse triangle has an obtuse angle.

Classifying triangles by the length of their sides:
A scalene triangle has no congruent sides.
An isosceles triangle has at least 2 congruent sides.
An equilateral triangle has an 3 congruent sides.

Quadrilaterals

consecutive angles
consecutive sides

Definitions:

opposite sides of a quadrilateral - segments that have no points in common
consecutive sides of a quadrilateral - 2 sides that intersect
opposite angles of a quadrilateral - angles whose vertices are not the endpoints of the same side
consecutive angles of a quadrilateral - angles whose vertices are endpoints of the same side

Classifying Quadrilaterals:

Definitions:

trapezoid - quadrilateral with a pair of parallel opposite sides (It could also have 2 pairs of parallel opposite sides.)
parallelogram - quadrilateral with 2 pairs of parallel opposite sides
rectangle - a parallelogram with 4 right angles
rhombus - a parallelogram with 4 congruent sides
square - a rectangle with 4 congruent sides (or a rhombus with 4 congruent angles)

Note: Some texts define trapezoids as quadrilaterals with only one pair of parallel opposite sides.

Definition:

isosceles trapezoid - one whose legs are congruent

