Geometry Week 7 Sec 4.2 to 4.5

section 4.2

**The <u>Ruler Postulate</u> guarantees that you can measure any segment.

**The <u>Protractor Postulate</u> guarantees that you can measure any angle.

<u>**Protractor Postulate</u>**: For every angle A there corresponds a positive real number less than or equal to 180.</u>

 $0 < m \angle A \le 180^{\circ}$

Note: $m \angle A$ stands for the <u>measure</u> of $\angle A$

Measuring angles with Protractors:

protractor – instrument for measuring angles

degree measure – real number that represents the measure of an angle

<u>degree</u> – unit of measure (equals 1/180 of a semicircle)

**The <u>Completeness Postulate</u> guarantees that a segment exists for every measure

** The <u>Continuity Postulate</u> guarantees that an angle exists for any measure.

<u>Continuity Postulate</u>: If *k* is a half-plane determined by AC, then for every real number, $0 < x \le 180$, there is exactly one ray, AB, that lies in *k* such that $m\angle BAC = x$

The Protractor Postulate and Continuity Postulate say the same thing but in reverse order. We call these statements <u>converses</u>.

Classifying Angles According to their Measure:

Angle name	Angle measure
acute angle	$0 < x < 90^{\circ}$
right angle	$x = 90^{\circ}$
obtuse angle	90° < x < 180°
straight angle	x = 180°

Definition:

 $\frac{\text{congruent angles}}{\text{measure.}} - \text{angles that have the same}$

section 4.3

Definition:

adjacent angles - two coplanar angles that have a common side and a common vertex but no common interior points.

∠BAD and ∠DAC are adjacent

∠EFG and ∠GHJ are not adjacent Angle Addition Postulate: If k lies in the interior of \angle MNP, then m \angle MNP = m \angle MNK + m \angle KNP.

Solution: $m \angle YWZ = 60^{\circ} - 25^{\circ} = 35^{\circ}$

With segments we have midpoints. With angles we have bisectors.

Definition:

An <u>angle bisector</u> is a ray that (except for its origin) is in the interior of an angle and forms congruent adjacent angles.

 \overrightarrow{DB} bisects $\angle ADC$ so we have $\angle ADB \cong \angle BDC$ (i.e. m $\angle ADB = m \angle BDC$)

We can also say that:	m∠ADB = ½m∠ADC
	m∠BDC = ½m∠ADC

<u>Question</u>: What happens if we bisect a straight angle?

We get 2 right angles

Definition:

m 🕇

n

perpendicular lines – lines that intersect to form right angles (symbol: ⊥)

m⊥n

Definition:

A <u>linear pair</u> is a pair of adjacent angles whose noncommon sides form a straight angle (are opposite rays)

 $\angle ABC$ and $\angle CBD$ are a linear pair

Definition:

<u>Vertical angles</u> – angles adjacent to the same angle and forming linear pairs with it

 $\angle 1$ and $\angle 3$ are vertical angles $\angle 2$ and $\angle 4$ are vertical angles

Definitions:

Two angles are <u>complementary</u> if the sum of their angle measures is 90°.

Two angles are <u>supplementary</u> if the sum of their angle measures is 180°.

Sample Problems: Let $m \angle A = 58^{\circ}$. Find the following measures:

1. The supplement of $\angle A$.

answer: 122°

2. The complement of $\angle A$.

answer: 32°

- 3. The angle that makes a vertical angle with $\angle A$. *answer:* 58°
- 4. The angle that makes a linear pair with $\angle A$.

answer: 122°

5. The angles formed when $\angle A$ is bisected.

answer: 29°

Theorems:

Theorem 4.1: All right angles are congruent.

Theorem 4.2: If two angles are adjacent and supplementary, then they form a linear pair.

Theorem 4.3: Angles that form a linear pair are supplementary.

Theorem 4.4: If one angle if a linear pair is a right angle, then the other angle is also a right angle.

Theorem 4.5: <u>Vertical Angle Theorem</u>. Vertical angles are congruent.

Theorem 4.6: Congruent supplementary angles are right angles.

Theorem 4.7: <u>Angle Bisector Theorem</u>. If \overrightarrow{AB} bisects $\angle CAD$, then m $\angle CAB = \frac{1}{2}m \angle CAD$

<u>Note</u>: Many diagrams are not intended to be accurate, so be careful!!! For example, just because two lines "look" parallel, don't assume they are. **Proof** of Theorem 4.1: All right angles are congruent.

Given: $\angle A$ and $\angle B$ are right angles *Prove*: $\angle A \cong \angle B$

Statements	Reasons
1. $\angle A \& \angle B$ are right angles	1. Given
2. m $\angle A = 90^{\circ}$, m $\angle B = 90^{\circ}$	2. defn. of right angle
3. m∠A = m∠B	3. substitution
4. $\angle A \cong \angle B$	4. defn. of congruent $\angle s$

Proof of Theorem 4.3: Angles that form a linear pair are supplementary.

Statements	Reasons
1. $\angle PAB$ and $\angle BAQ$ form a	1. Given
linear pair	
2. $\angle PAB$ and $\angle BAQ$ are	2. defn. of linear pair
adjacent and ∠PAQ is straight	
3. m∠PAB + m∠BAQ = m∠PAQ	3. Angle Add. Post.
4. m∠PAQ = 180°	4. defn. of straight angle
5. m∠PAB + m∠BAQ =180°	5. substitution
6. $\angle PAB$ and $\angle BAQ$ are	6. defn. of supp. angles
supplementary	

Proof of Theorem 4.1: All right angles are congruent.

Given: $\angle A$ and $\angle B$ are right angles *Prove*: $\angle A \cong \angle B$

Statements	Reasons
1. $\angle A \ \& \ \angle B$ are right angles	1.
2. m $\angle A = 90^{\circ}$, m $\angle B = 90^{\circ}$	2.
3. m∠A = m∠B	3.
4. $\angle A \cong \angle B$	4.

Proof of Theorem 4.3: Angles that form a linear pair are supplementary.

Statements	Reasons
1. $\angle PAB$ and $\angle BAQ$ form a	1.
linear pair	
2. \angle PAB and \angle BAQ are	2.
adjacent and ∠PAQ is straight	
3. m \angle PAB + m \angle BAQ = m \angle PAQ	3.
4. m∠PAQ = 180°	4.
5. m∠PAB + m∠BAQ =180°	5.
6. $\angle PAB$ and $\angle BAQ$ are	6.
supplementary	

<u>Triangles</u>

Classifying triangles by their angles:

An acute triangle has 3 acute angles.

A right triangle has a right angle.

An obtuse triangle has an obtuse angle.

Classifying triangles by the length of their sides:

A scalene triangle has no congruent sides.

An isosceles triangle has at least 2 congruent sides.

An equilateral triangle has an 3 congruent sides.

Quadrilaterals

consecutive angles

consecutive sides

Definitions:

opposite sides of a quadrilateral – segments that have no points in common

<u>consecutive sides of a quadrilateral</u> – 2 sides that intersect

opposite angles of a quadrilateral – angles whose vertices are not the endpoints of the same side

consecutive angles of a quadrilateral – angles whose vertices are endpoints of the same side Classifying Quadrilaterals:

Definitions:

- <u>trapezoid</u> quadrilateral with a pair of parallel opposite sides (It could also have 2 pairs of parallel opposite sides.)
- parallelogram quadrilateral with 2 pairs of parallel opposite sides
- <u>rectangle</u> a parallelogram with 4 right angles
- <u>rhombus</u> a parallelogram with 4 congruent sides
- <u>square</u> a rectangle with 4 congruent sides (or a rhombus with 4 congruent angles)

Note: Some texts define trapezoids as quadrilaterals with only <u>one</u> pair of parallel opposite sides.

Definition:

isosceles trapezoid – one whose legs are congruent